

User's Guide

omega.com

www.omega.com e-mail: info@omega.com

CN8200 SERIES Communications & Options Guide

OMEGAnet® On-Line Service www.omega.com

Internet e-mail info@omega.com

USA: ISO 9001 Certified

One Omega Drive, Box 4047 Stamford CT 06907-0047 Tel: (203) 359-1660 FAX: (203) 359-7700

e-mail: info@omega.com

Canada: 976 Bergar

Laval (Ouebec) H7L5A1 Tel: (514) 856-6928 FAX: (514) 856-6886 e-mail: info@omega.ca

For immediate technical or application assistance:

USA and Canada:

Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA® Customer Service: 1-800-622-2378 / 1-800-622-BEST® Engineering Service: 1-800-872-9436 / 1-800-USA-WHEN® TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Mexico:

Tel: (001) 800-826-6342 FAX: (001) 203-359-7807 En Español: (001) 203-359-7803 e-mail: espanol@omega.com

Servicing Europe:

Benelux:

Postbus 8034, 1180 LA Amstelveen The Netherlands Tel: (31) 20 6418405 FAX: (31) 20 6434643 Toll Free in Benelux: 0800 0993344 e-mail: nl@omega.com

Czech Republic:

Rudé armády 1868, 733 01 Karviná 8 Tel: 420 (69) 6311899 FAX: 420 (69) 6311114 Toll Free: 0800-1-66342 e-mail: czech@omega.com

France:

9. rue Denis Papin, 78190 Trappes Tel: (33) 130-621-400 FAX: (33) 130-699-120 Toll Free in France: 0800-4-06342 e-mail: france@omega.com

Germany/Austria:

Daimlerstrasse 26, D-75392 Deckenpfronn, Germany Tel: 49 (07056) 3017 FAX: 49 (07056) 8540 Toll Free in Germany: 0800 TC-OMEGASM e-mail: germany@omega.com

United Kingdom: ISO 9002 Certified

One Omega Drive River Bend Technology Centre Northbank, Irlam Manchester M44 5EX England Tel: +44 (0)161 777 6611 FAX: +44 (0)161 777 6622 Freephone: 0800-488-488

e-mail: sales@omega.co.uk

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives, OMEGA will add the CE mark to every appropriate device upon certification. The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains. and reserves the right to alter specifications without notice. WARNING: These products are not designed for use in, and should not be used for patient-connected applications.

Table of **Contents**

For information and instructions related to basic operations, refer to the Series CN8200 operator's manual supplied with your controller.

Options Wiring Diagrams Dual Alarm Outputs (Options -AL2)	
Dual 24 Volt DC Alarm Outputs (Option -AL3)	
Relay, N.O. Alarm Output (Option -AL1)	
RS-232 Communications (Option -C2)	
RS-485 Communications (Option -C4)	
Contact/Digital Input with Alarm	
(Options -RSP1, -RSP2, -RSP3)	1
Transducer Excitation (Options XP1, -XP2,	
-XP3, -XP4)	1
Process Output (Options -PVSV1, -PVSV2)	1
Guide to Digital Communications	
Remote Communications Options	1
Omega+ Protocol	1
- Message Format	1
- Sample Commands	2

Remote Communications Options	15
Omega+ Protocol	17
- Message Format	19
- Sample Commands	24
- Request Messages	25
- Response Messages	29
- Communications Parameter List	33
- Auxiliary Commands	37
- Communications Error Codes	40

Dual Alarm Outputs

Option -AL2: Dual Alarm Output, N.O.

This optional hardware module provides two alarm drive outputs. LED indicators A1 and A2 are used to indicate alarm conditions as configured in the Alarm Menu

Option Description:

Option -AL2: Dual alarm, N.O.

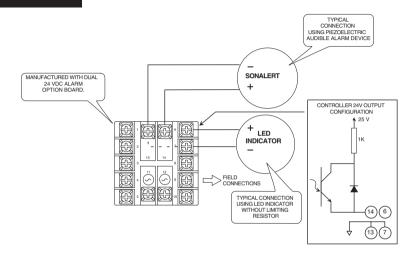
Load Limits:

Max. Load Current 1 A rms
Min. Load Current 0.5 mA rms

Power Factor Range 0.2 to 1.0 (can drive small motors, solenoids, valves, and

contactors)

Max. Surge Current


Non-repeating for 1 second Max. I²T for fusing (0.01 sec) 7.5 A

4.5 amp-squared seconds (1 A -

ABC1 typical fuse)

Dual 24 Vdc Alarm Outputs

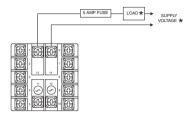
Option -AL3: Dual 24 Vdc Alarm Outputs

Option Description: Dual 24 V outputs with clamping diodes

Pins 13 & 7 are connected internally

Source current is limited to 25 mA (1000 ohm

resistor)


Open circuit voltage is 25 volts

<u>Isolation:</u> Isolation 300 volts ac/dc either output to

instrument

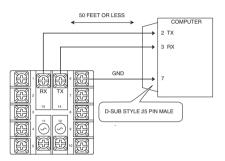
Relay, N.O. Alarm Output

Option -AL1: Relay, N.O. Alarm Output

Option Description:

NO (Normally open) relay contact is closed when either alarm is active. Jumpers on the board can be removed to activate the output for a single alarm only:

JP1 - Alarm A1 JP2 - Alarm A2

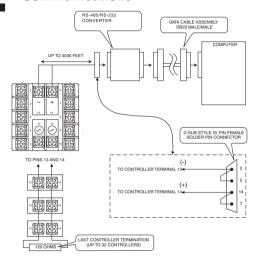

The relay life is greater than 100,000 operations at 5 operations per second switching full load.

^{*}Connect load and supply voltage per the following table:

	*
Load Type	5 Amp Voltage Limit
Resistive DC	30 Vdc
Inductive DC (L/R = 7 ms)	20 Vdc
Resistive AC	250 Vac
Inductive AC (pF = 0.4)	150 Vac
Motor, AC, 1/6 hp	250 Vac
Tungsten Lamp, 360 W	120 Vac

RS-232 Communications

Option -C2: RS-232 (one-to-one) Communications


Option Description:

Provides a one-to-one connection between the controller and an RS-232 port. Computers, PLCs, or dumb terminals may be used to set and access controller data.

 \sim 7

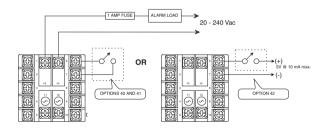
RS-485 Communications

Option -C4: RS-485 (one-to-many) Communications

Option Description: Provides one-to-many communications.

If run exceeds 1000 ft., terminate the controller furthest from the computer by connecting a 120-ohm. 1/4-watt resistor between terminals 13 and 14.

Contact/Digital Input with Alarm


Options -RSP1, -RSP2, -RSP3 Remote Setpoint Switch, with Alarm (Contact Digital Input)

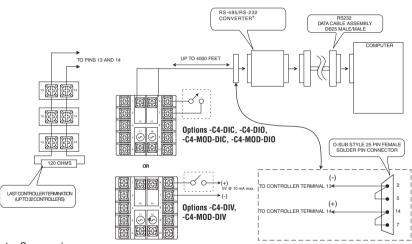
Input Option Menu

Display Parameter Selection Default

E-d | Func Function | 558.5 |
Second Setpoint Select | 558.5 |
Select | 558.5 |
Second Setpoint Select | 558.5 |
Select | 558.5 |
Second Setpoint Select | 558.5 |
Select | 5

SEBY Remote Standby
FSFH Ramp/Soak
Run-Hold

Option Description:


Dual function board (functions unrelated)

- a. Output alarm is energized when either A1 or A2 is active.
- b. Digital input controls Remote Standby, Ramp-Soak Run/Hold, OR Second Setpoint Select.

^{*}Converter is supplied with a wallplug-mount power transformer.

RS-485 Communications

Options -C4-DIC, -C4-DIO, -C4-DIV, -C4-MOD, -C4-MOD-DIC, -C4-MOD-DIO, -C4-MOD-DIV: Digital Input plus RS-485 Communications

Note: See previous page for control input menu selections

Option Description: Provides one-to-many communications.

If run exceeds 1000 ft., terminate the controller furthest from the computer by connecting a 120-ohm, 1/4-watt resistor between terminals 13 and 14.

Contact/Digital Input with Alarm

Option -RSP1: Active when switch closed.
Option -RSP2: Active when switch open.
Option -RSP3: Active when 5 V input present

Load Limits:

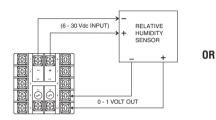
Max. Load Current: 1 A rms
Min. Load Current: 0.5 mA rms

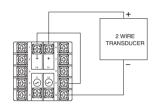
Power Factor Range: 0.2 to 1.0 (can drive small motors, solenoids, valves,

and contactors)

Max. Surge Current,

Non-Repeating for 1 second: 7.5 A


Max. I²T for fusing (0.01 sec): 4.5 amp-squared secs (1A - ABC1


typical fuse)

^{*}Converter is supplied with a wallplug-mount power transformer.

Transducer Excitation

Option -XP1, -XP2, -XP3, -XP4: Transducer Excitation

Option Description:

The transducer excitation option provides power to remote transducers. The transducer outputs, in turn, provide a signal to the controller input which can be scaled in the appropriate engineering units.

Option -XP1: 15 Vdc Option -XP2: 12 Vdc Option -XP3: 10 Vdc Option -XP4: 5 Vdc

All options will provide at least 20 mA. The transducer circuitry is thermally protected from short circuits.

Auxiliary Output

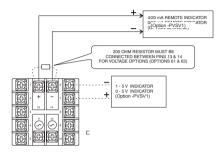
Option -PVSV1, -PVSV2: Process Output Option Menu

Selection

Display Parameter

G∪*E.U* Variable

cci i	L. O.L		O I O I
JLL.L	Low Scale	Full Scale	Sensor Low Scale (PV retransmit)
			Setpoint Low Scale (SV retransmit)
SCL H	High Scale	Full Scale	Sensor High Scale (PV retransmit)
			Setpoint High Scale (SV retransmit)


5P Setpoint Value

Default

Process Variable Process Variable

Auxiliary Output

Option -PVSV1, -PVSV2: Auxiliary Output

Option Description:

The Setpoint Variable or Process Variable is transmitted to a remote device (chart recorders, indicators, data recorders, computers, process controllers, etc.) with 1 of 4 different interfaces: Option -PVSV1: 4-20 mA

Option -PVSV1: 4-20 m Option -PVSV2: 0-5 V

The output signal is scalable in the Auxiliary Output Menu. Multiple remote indicators may be driven by the controller.

For current (mA) options, the remote indicators are connected in series. The sum of the input resistance for all remote indicators must be less than 400 ohms. For voltage options, the remote indicators are connected in parallel. The sum of the currents for all remote indicators must be less than 10 mA.

Digital Communications Option

Three remote communications options are available for the CN8200 which allow interfacing to remote devices utilizing the most common industry standards: RS232 and RS485.

Remote Communications Options RS-232

This method allows bidirectional data transfer via a three-conductor cable consisting of signal ground, receive input and transmit output. It is recommended for communication distances less than 50 feet between the computer terminal and the instrument. Note: Multiple instruments cannot be connected to the same port.

The RS232 port is optically isolated to eliminate ground loop problems. Typically, "Data Out" of the computer/ terminal connects to the "RCV" terminal. "Data In" connects to the "XMT" terminal. If shielded cable is used, it should be connected to the frame ground at one end only. Signal ground is to be connected at appropriate ground terminals (refer to wiring diagram on next page).

RS-485

The RS485 multipoint capability allows up to 32 controllers to be connected together in a half-duplex network or up to 100 controllers with an appropriate communications repeater.

Note: Call factory for a recommended RS485 converter. This method allows bidirectional data transfer over a twisted pair cable. The twisted pair cable is a transmission line; therefore, terminating resistors are required at the most distant ends of the line to minimize reflections (typically 120 ohms at each end). The RS485 circuit is fully optically isolated, eliminating ground loop problems. Parallel drops from the transmission lines should be kept as short as possible; however, the line may be daisy-chained at each controller. The polarity of the line is important and each device will specify an "A" (+) and "B" (-) connection.

Figure 1a. Wiring diagram for RS-232 digital communications.

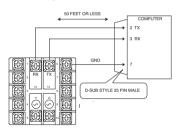
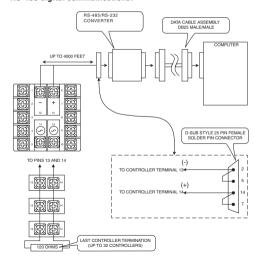
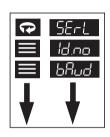



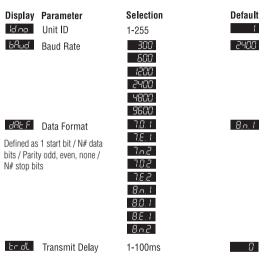
Figure 1b. Wiring diagram for RS-485 digital communications.

Digital Communications Option

Omega+ Protocol

The Omega+ Protocol provides an easy way to query and modify controller parameters using a personal computer and the optional digital communications option of the CN8200. In this manual, the word "host" refers to the personal computer that's communicating with the controllers in the serial link, and the word "slave" refers to the controllers themselves.


All transactions between the host and the slaves are done with messages consisting of only printable ASCII characters. There are only two primary types of messages: Requests and Responses. Messages coming from the host are called requests and messages coming from the slaves are called responses.


With the exception of a broadcast request, for every request sent from the host, the slave will send back a response. If a slave does not respond within 100 milliseconds, then the request can be considered lost.

A broadcast request is a request having an ID of '00' (see Message Formats on next page). It is used to address all slaves on the network. All slaves on the network will perform the actions requested in a broadcast message. However, a response message will not be returned. Therefore, the host can only broadcast Write or Auxiliary Command Requests. All slaves will ignore all Read Broadcast Requests.

Communications Option Menu

Omega+ Protocol (Standard)

Digital Communications Option

Message Formats

All Omega+ messages adhere to the general format of: [START CHAR][ID][ZONE][TYPE][PARAM][ERROR] [DATA][CHKSUM][END CHAR]

START CHAR

This is a single character which designates the start of the message. For a Request message, this character is the ASCII '\$' and for a Response message, this character is the ASCII '%'.

ID

This is a two-character ID identifying the receiving controller. Controller IDs go from 1-255 inclusively and all slaves in the network must have unique IDs. The ID number of '00', when used in a request, designates a broadcast message that is used to address all controllers in the network. See the section Request Message for an explanation of the broadcast message.

In order to represent 255 with just two ASCII characters, a number system known as the Message Code Numbering System is used. In this system, the most significant digit is represented with the numbers 0-9 and the letters A-Z and the least significant digit is represented with the numbers 0-9.

The numbers 0-9 have the same values as their decimal counterparts and the letters A-Z have the values of 100 - 350 inclusively in increments of 10.

Example:

Message Code Value	=	Decimal Value
00		0 + 0 = 00
99		90 + 9 = 99
A0		100 + 0 = 100
A2		100 + 2 = 102
B8		110 + 8 = 118
P5		250 + 5 = 255

Zone

This is a two character ID identifying the Zone number in multi-zone capable controllers. For the CN8200, this number must be 01.

Digital Communications Option

Type

This is a single character identifying the type of message. The following table lists the type characters for all messages.

TYPE character	Message Type
R	Read Request or Read Response Returning a Positive Result
r	Read Response Returning a Negative Result
W	Write Positive Value Request and Response
W	Write Negative Value Request and Response
A	Auxiliary Command

For further information, see following sections on the different message types.

PARAM

This is a two character, message specific, parameter ID. For a Read/Write Request or Response message, this ID identifies the controller parameter. For an Auxiliary Command Request or Response message, this ID specifies the command.

STATUS

This is a single-character field used in all response messages, containing a status code specifying the status of the request message received.

DATA

This field contains the ASCII representation of the value of the parameter. For the Auxiliary Request or Response messages, this field either contains the ASCII representation of a numeric value or just ASCII data. The length of this field depends on the message type. The discussion on the specific message types gives the exact requirements for this field.

All ASCII representations of numeric values must be done using the characters '0'-'9', and '.'. Any use of other ASCII characters, including' 'and '-' will result in a bad message. Negative numbers **CANNOT** be represented by preceding the number with '-' character. Instead, a special message type is used. See subsequent sections for more information.

Digital Communications Option

IMPORTANT: The data field in the Read and Write Request and Response messages must and will only contain the characters '0'-'9', and the decimal point '.'. All other characters are considered illegal. When the data field is listed as Unused or Ignored in an auxiliary command, it does not mean that the field can be skipped when sending in the request message. Instead, this field must be padded with any 10 alphanumeric (only letters and numbers are allowed) ASCII characters.

22 used. See subsequent sections for more information.

Examples of valid numeric representations for a 6 character data field:

Numeric Value	ASCII Representation
3	3.0000
	000003
	003.00
100	100.00
	0100.0
	000100
3.2	003.20
	0003.2

Examples of invalid numeric representations for 6 character data field: (B represents a blank, or a space, character)

Numeric Value	Bad ASCII Representation	Why?
3	BBBBB3	Leading blanks
		are not allowed.
	3.0BBBB	Trailing blanks
		are not allowed.
-3.2	-3.20000	'-' is not
		allowed.

Digital Communications Option

CHKSUM

This is a two character Message Code Numbering System, representing the sum of all the ASCII values of all the characters (excluding the START, CHAR, the END CHAR, and the CHKSM themselves) in the message. The sum is computed using the following formula:

CHKSM = SUM(All Message Characters)%256 % represents the modulus operator.

END CHAR

This is a single character designating the end of the message. For all messages, the character used is <CR>, the carriage return.

Request Messages:

Request Messages are sent from the host to the slaves. Each request will have an ID identifying the intended recipient of the request. If the ID is '00' (zero), then the request is a broadcast message. All slaves will perform the action requested in the broadcast request. However, a response message will not be returned. Therefore, it only makes sense to send Write or Auxiliary Command Requests as broadcast requests. There are three types of Request Messages: Read, Write, and Auxiliary Commands.

The Read Request:

The Read Request is used to query parameter values and it has the following message format:

[START CHAR][ID][ZONE][TYPE][PARAM][CHKSUM][END CHAR]

Field Description: TYPE Must contain the uppercase letter 'R'.

Request Message	Description
\$Ø1Ø1RØ5C1 <cr></cr>	Queries the value of the Process Variable of Controller #1.
\$Ø1Ø1RØ9C5 <cr></cr>	Queries the value of the EEPROM Setpoint 1 of Controller #1
\$Ø2Ø1RØ9C6 <cr></cr>	Queries the value of the EEPROM Setpoint 1 of Controller #2.
	- END CHAR - CHKSUM - PARAM - TYPE - ZONE - ID
	– START CHAR

Examples of the responses to these requests are given in later sections on **Response Messages**.

Digital Communications Option

The Write Request:

The Write Request is used to modify parameter values and it has the following message format: [START CHAR][ID][ZONE] [TYPE][PARAM][DATA][CHKSUM][END CHAR]

Field Description: TYPE This field must contain one of the following two characters.

W- Value in DATA is a positive value.

w- Value in DATA is a negative value.

DATA A six-character ASCII representation of a numeric value.

Request Message Description \$Ø1Ø1WØ91Ø.123G7<CR> Change both the RAM and EEPROM copies of Setpoint #1 in controller #1 to the value of 10.123 \$Ø1Ø1w1Ø1Ø.123J1<CR> Change only the RAM copy of setpoint #1 in controller #1 to the value of -10.123 (notice the lowercase 'w'). **END CHAR** CHKSUM DATA **PARAM TYPF** ZONE START CHAR

The Auxiliary Command Request:

The Auxiliary Command Request is used to issue commands to the controllers and it has the following message format:

Field Description: TYPE This field must contain the uppercase letter 'A'

DATA A ten-character ASCII representation of a numeric value or 10 alphanumeric ASCII characters

Request Message	Description
\$Ø1Ø1AØ1XXXXXXXXXXL2 <cr></cr>	Tell controller #1 to load all parameters with their defaults. The 10 X's are padding characters.
\$Ø2Ø1AØ2ØØØ1.ØØØØØ69 <cr></cr>	Tell controller #2 to perform a low RTD calibration.
	END CHAR
	CHKSUM
	DATA
	PARAM
	TYPE
	ZONE
	ID
	START CHAR

Digital Communications Option

Response Messages:

Response Messages are replies to the requests sent from the host. For each request received, the slave will reply back with a response.

For all requests, the Omega+ Protocol specifies a maximum response time of 100 milliseconds. If a response is not received after 100 milliseconds, that request can be considered lost.

There are three types of Response Messages: Read, Write, and Auxiliary Commands.

The Read Response:

The Read Response will be sent in response to a Read Request. Some examples:

Request Message	Description
%Ø1Ø1RØ5Ø21.123K8 <cr></cr>	The value of the Process Variable is 21.123 Degrees C.
%Ø2Ø1R1Ø1G7 <cr></cr>	A serial transmission has occurred: Framing Error
%Ø1Ø1rØ9Ø21.ØØØN8 <cr></cr>	The value of the EEPROM setpoint #1 is -21 Degrees C (notice the lowercase 'r').
	END CHAR CHKSUM DATA STATUS PARAM TYPE ZONE ID
	START CHAR

Digital Communications Option

The Write Response:

The Write Response will be sent in response to a Write Request. Some examples:

Request Message	Description
%Ø1Ø1WØ93I1 <cr></cr>	A serial transmission error has occurred: Parity error. Write failed.
%Ø1Ø1w1ØØK2 <cr></cr>	RAM copy of setpoint #1 modified successfully.
	END CHAR CHKSUM STATUS PARAM TYPE ZONE
	ID START CHAR

The Auxiliary Command Response:

The Auxiliary Command Response will be sent in response to an Auxiliary Command Request.

Some examples are:

Request Message	Description
%Ø1Ø1AØ1ØXXXXXXXXXXXØ4 <cr></cr>	Default load all para- meters has started.
%Ø2Ø1AØ2ØØ.ØØØØØØØØØB6 <cr></cr>	RTD low calibration on controller #2 has started.
	END CHAR CHKSUM DATA STATUS PARAM TYPE ZONE ID START CHAR

Digital Communications Option

 ${\it Table 1. Communications Parameter List (Omega+Protocol)}$

Paramete	r	Parameter	
Number	Description	Number	Description
1	Controller Type	19	Manual Control
2	Software Version		2 Percentage
3	Communications	2Ø	Output 1 Deadband
	Version	21	Output 1 Hysteresis
4	Status Byte	22	Output 1 Proportional
5	Process Value		Band
6	Operating Mode	23	Output 2 Proportional
7	Access Level		Band
8	Contact/Digital	3Ø	Rate/Derivative Action
	Input State	32	Reset/Integral Action
9	Setpoint - RAM,	34	Manual Reset/
	EEPROM		Internal Action
1Ø	Setpoint - RAM	37	Output 2 Deadband
	Only	38	Output 2 Hysteresis
11	Second Setpoint -	39	Autotune Damping
	RAM, EEPROM	4Ø	Recipe Option
12	Second Setpoint -	41	Single Setpoint Ramp
	RAM Only		Time
13	Remote Analog	42	Ramp Time 1
	Setpoint	43	Ramp Time 2
14	Recipe Setpoint	44	Ramp Time 3
16	Output 1 Percentage	45	Ramp Time 4
17	Output 2 Percentage	46	Ramp Time 5
18	Manual Control	47	Ramp Time 6
	1 Percentage	48	Ramp Time 7

Table 1. Continued

Parameter	r	Parameter	
Number	Description	Number	Description
49	Ramp Time 8	73	Soak Time 8
5Ø	Ramp Event 1	74	Soak Event 1
51	Ramp Event 2	75	Soak Event 2
52	Ramp Event 3	76	Soak Event 3
53	Ramp Event 4	77	Soak Event 4
54	Ramp Event 5	78	Soak Event 5
55	Ramp Event 6	79	Soak Event 6
56	Ramp Event 7	8Ø	Soak Event 7
57	Ramp Event 8	81	Soak Event 8
58	Soak Level 1	82	Recycle Number
59	Soak Level 2	83	Holdback Band
6Ø	Soak Level 3	84	Termination State
61	Soak Level 4	85	Power Resume
62	Soak Level 5	86	Input Bias
63	Soak Level 6	87	Input Low Scale
64	Soak Level 7	88	Input High Scale
65	Soak Level 8	89	Lower Setpoint Limit
66	Soak Time 1	9Ø	Upper Setpoint Limit
67	Soak Time 2	91	Input Filter
68	Soak Time 3	92	Input Type
69	Soak Time 4	94	Output 1 Type
7Ø	Soak Time 5	95	Output 1 Action
71	Soak Time 6	96	Output 1 Alarm
72	Soak Time 7		Action

Digital Communications Option

Table 1 Continued

Table 1	. Continued		
Paramete	er	Paramete	er
Number	Description	Number	Description
97	Output 1 Alarm Operation	B6	TC/RTD Decimal Position
98	Output 1 Alarm Delay	B7	Linear Decimal Position
99	Output 1 Alarm Inhibit	B8	Display Filter
AØ	Output 1 Process	B9	Display Units
	Alarm Setpoint	C1	Display Blanking
A1	Output 1 Deviation	C2	Alarm 1 Action
	Alarm Setpoint	C3	Alarm 1 Operation
A2	Output 1 Cycle Time	C4	Alarm 1 Delay
A3	Output 1 Low Limit	C5	Alarm 1 Inhibit
A4	Output 1 High Limit	C6	Alarm 1 Process Setpoint
A5	Output 2 Type	C7	Alarm 1 Deviation Setpoint
A6	Output 2 Action	C8	Alarm 2 Action
A7	Output 2 Alarm	C9	Alarm 2 Operation
	Action N/A	DØ	Alarm 2 Delay
A8	Output 2 Alarm Operation	D1	Alarm 2 Inhibit
A9	Output 2 Alarm	D2	Alarm 2 Process Setpoint
	Delay N/A	D3	Alarm 2 Deviation Setpoint
BØ	Output 2 Alarm Inhibit	D4	Communication Protocol
B1	Output 2 Process	D5	Communication ID
	Alarm Setpoint	D6	Communication Baud Rate
B2	Output 2 Deviation	D7	Communication Data Format
	Alarm Setpoint	D8	Communication
B3	Output 2 Cycle Time		Transmit Delay
B4	Output 2 Low Limit	E1	Output 1 Failsafe %
B5	Output 2 High Limit	E2	Output 2 Failsafe %

Table 1. Continued

Parameter Parameter				
Number	Description	Number	Description	
E3	Loop Break Time	G7	Contact/Digital	
E4	Highest Reading		Switch Function	
E5	Lowest Reading	H2	Autotune State	
E8	Option Selection N/A	H3	Recipe State	
E9	TC Zero Calibration	H5	Current Recipe	
FØ	TC Span Calibration		Segment	
F1	RTD Zero Calibration	H6	Active Setpoint	
F2	RTD Span Calibration	H7	Resume Exhaustion	
F3	Low-Voltage Zero		Flag	
F.4	Calibration	F4	Low-Voltage Span	
F4	Low-Voltage Span	H8	LED Status Indicator	
F5	Calibration	H9	RTD (with decimal	
FD C1	High-Voltage Zero Calibration		support) Zero Calibration	
F6	• • • • • • • • • • • • • • • • • • • •	IØ	RTD (with decimal	
го	High-Voltage Span Calibration		support) Span Calibration	
F7	Current Zero Calibration			
F8	Current Span Calibration			
G1	Auxiliary Output Variable			
G2	Auxiliary Output			
UL	Scale Low			
G3	Auxiliary Output			
30	Scale High			
G5	RAS Scale Low			
G6	RAS Scale High			
	· · · · · · · · · · · · · · · · · · ·			

Digital Communications Option

Auxiliary Commands:

Command: Load Parameter Defaults

Parameter #: 01

Description Restore all menu parameters to their

default values.

Request Data Field: Ignored.
Response Data Field: Ignored.

Command: Perform Process Low Calibration

Parameter #: 02

Description: Performs a Low Calibration. The

data field in the request message specifies the process. Make sure the prerequisite for the calibration is satisfied before issuing a calibration command. For instance, the RTD calibration command must only be used when the input sensor type is chosen as RTD or RTD w/ Decimal.

Request Data Fields: A 10 character ASCII representation

of a numeric value specifying what

to calibrate.

0 - Thermocouple

1 - RTD, Resistive Thermal Device

2 - Linear

3 - RAS, Remote Analog Setpoint

Response Data Field: Ignored.

Command: Perform Process High Calibration

Parameter #: 03

Description: Performs a High Calibration. The data

field in the request message specifies the process. Make sure the prerequisite for the calibration is satisfied before issuing a calibration command For instance, the RTD calibration command must only be used when the input sensor type is chosen as RTD or

RTD w/ Decimal.

Request Data Field: A 10 character ASCII representation

of a numeric value specifying what

to calibrate.

Digital Communications Option

0 - Thermocouple

1 - RTD, Resistive Thermal Device

2 - Linear

3 - RAS, Remote Analog Setpoint

Command: Retrieve Display

Parameter #: 05

Description: Retrieves the string currently dis-

played on the slave's display. The data field in the request message specifies which display and the data field in the response message contains the string.

Request Data Field: A 10 character ASCII representation

of a numeric value specifying which display to retrieve data from.

0 - Lower Display 1 - Upper Display

Response Data Field: The ASCII string.

Command: Clear Latched Alarms

Parameter #: 10

Description: Clear all latched alarms.

Request Data Field: Ignored.

Response Data Field: Ignored.

Table 2. Communications Error Codes Returned.

Code	Description
0	No error.
1	Framing error.
2	Hardware error.
3	Parity error.
4	Bad character in the TYPE field.
5	Bad message. Message cannot be understood.
6	Bad checksum. The checksum received did not match the checksum of the message.
7	Bad zone ID.
8	Bad auxiliary command ID. The auxiliary command is not supported in this controller.
9	Bad parameter ID. The parameter is not supported in this controller.
Α	Bad data. Bad representation in the data field or data is out of range.
В	Attempt to write to a read only parameter.
С	Cannot write to a parameter because it's in use.

Notes

Notes		

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **25 months** from date of purchase. OMEGA Warranty adds an additional one (1) month grace period to the normal **two (2) year product** warranty to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misupelication; misuse or other operating conditions outside of OMEGA's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR **WARRANTY** RETURNS, please have the following information available BEFORE contacting OMEGA:

- Purchase Order number under which the product was PURCHASED.
- Model and serial number of the product under warranty, and
- Repair instructions and/or specific problems relative to the product.

FOR **NON-WARRANTY** REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

- Purchase Order number to cover the COST of the repair,
- 2. Model and serial number of the product, and
- Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2004 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

TEMPERATURE

- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

- Transducers & Strain Gages
- Load Cells & Pressure Gages
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL

- Rotameters, Gas Mass Flowmeters & Flow Computers
- · Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY

- pH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION

- Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- · Datalogging Systems
- Recorders, Printers & Plotters

HEATERS

- · Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
 Air Soil & Water Maniton
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- pH, Conductivity & Dissolved Oxygen Instruments